教你使用Python玩转MySQL数据库,大数据导入不再是难题!
mhr18 2024-10-16 10:36 35 浏览 0 评论
数据分析离不开数据库,如何使用python连接MySQL数据库,并进行增删改查操作呢?
我们还会遇到需要将大批量数据导入数据库的情况,又该如何使用Python进行大数据的高效导入呢?
本文会一一讲解,并配合代码和实例。
一、背景
我是在Anaconda notebook中进行连接实验的,环境Python3.6,当然也可以在Python Shell里面进行操作。
最常用也最稳定的用于连接MySQL数据库的python库是PyMySQL。
所以本文讨论的是利用PyMySQL连接MySQL数据库,进行增删改查操作,以及存储大批量数据。
方法参考PyMySQL官方文档和《python数据采集》关于数据存储的部分。
欢迎大家去阅读原文档,相信会理解的更加透彻。
二、基本操作
1、安装PyMySQL库
最简单的方式: 在命令行输入 pip install pymysql
或者: 下载whl文件[1]进行安装,安装过程自行百度。
2、安装MySQL数据库
类MySQL数据库有两种:MySQL和MariaDB,我用的是后者MariaDB。
两者在绝大部分性能上是兼容的,使用起来感觉不到啥区别。
给出下载地址:MySQL[2],MariaDB[3],安装过程很简单,一路Next Step,不过要记好密码。
有个小插曲,MySQL和MariaDB相当于姐姐妹妹的关系,两者由同一个人(Widenius)创建的。MySQL被Oracle收购后,Widenius先生觉得不爽,于是搞了个MariaDB,可以完全替代MySQL。大牛就是任性。
3、SQL基本语法
下面要用SQL的表创建、查询、数据插入等功能,这里简要介绍一下SQL语言的基本语句。
- 查看数据库:SHOW DATABASES;
- 创建数据库:CREATE DATEBASE 数据库名称;
- 使用数据库:USE 数据库名称;
- 查看数据表:SHOW TABLES;
- 创建数据表:CREATE TABLE 表名称(列名1 (数据类型1),列名2 (数据类型2));
- 插入数据:INSERT INTO 表名称(列名1,列名2) VALUES(数据1,数据2);
- 查看数据:SELECT * FROM 表名称;
- 更新数据:UPDATE 表名称 SET 列名1=新数据1,列名2=新数据2 WHERE 某列=某数据;
4、连接数据库
安装好必要得文件和库后,接下来正式开始连接数据库吧,虽然神秘却不难哦!
#首先导入PyMySQL库
import pymysql
#连接数据库,创建连接对象connection
#连接对象作用是:连接数据库、发送数据库信息、处理回滚操作(查询中断时,数据库回到最初状态)、创建新的光标对象
connection = pymysql.connect(host = 'localhost' #host属性
user = 'root' #用户名
password = '******' #此处填登录数据库的密码
db = 'mysql' #数据库名
)
执行这段代码就连接好了!
5、增删改查操作
首先来查看一下有哪些数据库:
#创建光标对象,一个连接可以有很多光标,一个光标跟踪一种数据状态。
#光标对象作用是:、创建、删除、写入、查询等等
cur = connection.cursor()
#查看有哪些数据库,通过cur.fetchall()获取查询所有结果
print(cur.fetchall())
打印出所有数据库:
(('information_schema',),
('law',),
('mysql',),
('performance_schema',),
('test',))
在test数据库里创建表:
#使用数据库test
cur.execute('USE test')
#在test数据库里创建表student,有name列和age列
cur.execute('CREATE TABLE student(name VARCHAR(20),age TINYINT(3))')
向数据表student中插入一条数据:
sql = 'INSERT INTO student (name,age) VALUES (%s,%s)'
cur.execute(sql,('XiaoMing',23))
查看数据表student内容:
cur.execute('SELECT * FROM student')
print(cur.fetchone())
打印输出为:('XiaoMing', 23)
Bingo!是我们刚刚插入的一条数据
最后,要记得关闭光标和连接:
#关闭连接对象,否则会导致连接泄漏,消耗数据库资源
connection.close()
#关闭光标
cur.close()
OK了,整个流程大致如此。
当然这里都是很基础的操作,更多的使用方法需要在PyMySQL官方文档[4]里去寻找。
三、导入大数据文件
以csv文件为例,csv文件导入数据库一般有两种方法:
1、通过SQL的insert方法一条一条导入,适合数据量小的CSV文件,这里不做赘述。
2、通过load data方法导入,速度快,适合大数据文件,也是本文的重点。
样本CSV文件如下:
总体工作分为3步:
1、用python连接mysql数据库;
2、基于CSV文件表格字段创建表;
3、使用load data方法导入CSV文件内容。
sql的load data语法简介:
LOAD DATA LOCAL INFILE 'csv_file_path' INTO TABLE table_name FIELDS TERMINATED BY ',' LINES TERMINATED BY '\\r\\n' IGNORE 1 LINES
csv_file_path 指文件绝对路径 table_name指表名称 FIELDS TERMINATED BY ','指以逗号分隔 LINES TERMINATED BY '\\r\\n'指换行 IGNORE 1 LINES指跳过第一行,因为第一行是表的字段名
下面给出全部代码:
#导入pymysql方法
import pymysql
#连接数据库
config = {'host':'',
'port':3306,
'user':'username',
'passwd':'password',
'charset':'utf8mb4',
'local_infile':1
}
conn = pymysql.connect(**config)
cur = conn.cursor()
#load_csv函数,参数分别为csv文件路径,表名称,数据库名称
def load_csv(csv_file_path,table_name,database='evdata'):
#打开csv文件
file = open(csv_file_path, 'r',encoding='utf-8')
#读取csv文件第一行字段名,创建表
reader = file.readline()
b = reader.split(',')
colum = ''
for a in b:
colum = colum + a + ' varchar(255),'
colum = colum[:-1]
#编写sql,create_sql负责创建表,data_sql负责导入数据
create_sql = 'create table if not exists ' + table_name + ' ' + '(' + colum + ')' + ' DEFAULT CHARSET=utf8'
data_sql = "LOAD DATA LOCAL INFILE '%s' INTO TABLE %s FIELDS TERMINATED BY ',' LINES TERMINATED BY '\\r\\n' IGNORE 1 LINES" % (csv_filename,table_name)
#使用数据库
cur.execute('use %s' % database)
#设置编码格式
cur.execute('SET NAMES utf8;')
cur.execute('SET character_set_connection=utf8;')
#执行create_sql,创建表
cur.execute(create_sql)
#执行data_sql,导入数据
cur.execute(data_sql)
conn.commit()
#关闭连接
conn.close()
cur.close()
相关推荐
- 【预警通报】关于WebLogic存在远程代码执行高危漏洞的预警通报
-
近日,Oracle官方发布了2021年1月关键补丁更新公告CPU(CriticalPatchUpdate),共修复了包括CVE-2021-2109(WeblogicServer远程代码执行漏洞)...
- 医院信息系统突发应急演练记录(医院信息化应急演练)
-
信息系统突发事件应急预案演练记录演练内容信息系统突发事件应急预案演练参与人员信息科参与科室:全院各部门日期xxxx-xx-xx时间20:00至24:00地点信息科记录:xxx1、...
- 一文掌握怎么利用Shell+Python实现完美版的多数据源备份程序
-
简介:在当今数字化时代,无论是企业还是个人,数据的安全性和业务的连续性都是至关重要的。数据一旦丢失,可能会造成无法估量的损失。因此,如何有效地对分布在不同位置的数据进行备份,尤其是异地备份,成为了一个...
- docker搭建系统环境(docker搭建centos)
-
Docker安装(CentOS7)1.卸载旧版Docker#检查已安装版本yumlistinstalled|grepdocker#卸载旧版本yumremove-ydocker.x...
- 基础篇:数据库 SQL 入门教程(sql数据库入门书籍推荐)
-
SQL介绍什么是SQLSQL指结构化查询语言,是用于访问和处理数据库的标准的计算机语言。它使我们有能力访问数据库,可与多种数据库程序协同工作,如MSAccess、DB2、Informix、M...
- Java21杀手级新特性!3行代码性能翻倍
-
导语某券商系统用这招,交易延迟从12ms降到0.8ms!本文揭秘Oracle官方未公开的Record模式匹配+虚拟线程深度优化+向量API神操作,代码量直降70%!一、Record模式匹配(代码量↓8...
- 一文读懂JDK21的虚拟线程(java虚拟线程)
-
概述JDK21已于2023年9月19日发布,作为Oracle标准Java实现的一个LTS版本发布,发布了15想新特性,其中虚拟线程呼声较高。虚拟线程是JDK21中引入的一项重要特性,它是一种轻量级的...
- 效率!MacOS下超级好用的Linux虚拟工具:Lima
-
对于MacOS用户来说,搭建Linux虚拟环境一直是件让人头疼的事。无论是VirtualBox还是商业的VMware,都显得过于笨重且配置复杂。今天,我们要介绍一个轻巧方便的纯命令行Linux虚拟工具...
- 所谓SaaS(所谓三维目标一般都应包括)
-
2010年前后,一个科技媒体的主编写一些关于云计算的概念性问题,就可以作为头版头条了。那时候的云计算,更多的还停留在一些概念性的问题上。而基于云计算而生的SaaS更是“养在深闺人未识”,一度成为被IT...
- ORA-00600 「25027」 「x」报错(报错0xc0000001)
-
问题现象:在用到LOB大对象的业务中,进行数据的插入,失败了,在报警文件中报错:ORA-00600:内部错误代码,参数:[25027],[10],[0],[],[],[],[],[...
- 安卓7源码编译(安卓源码编译环境lunch失败,uname命令找不到)
-
前面已经下载好源码了,接下来是下载手机对应的二进制驱动执行编译源码命令下载厂商驱动https://developers.google.com/android/drivers?hl=zh-cn搜索NGI...
- 编译安卓源码(编译安卓源码 电脑配置)
-
前面已经下载好源码了,接下来是下载手机对应的二进制驱动执行编译源码命令下载厂商驱动https://developers.google.com/android/drivers?hl=zh-cn搜索NGI...
- 360 Vulcan Team首战告捷 以17.5万美金强势领跑2019“天府杯“
-
2019年11月16日,由360集团、百度、腾讯、阿里巴巴、清华大学与中科院等多家企业和研究机构在成都联合主办了2019“天府杯”国际网络安全大赛暨2019天府国际网络安全高峰论坛。而开幕当日最激荡人...
- Syslog 日志分析与异常检测技巧(syslog发送日志配置)
-
系统日志包含有助于分析网络设备整体运行状况的重要信息。然而,理解并从中提取有效数据往往颇具挑战。本文将详解从基础命令行工具到专业日志管理软件的全流程分析技巧,助你高效挖掘Syslog日志价值。Gr...
- 从Oracle演进看数据库技术的发展(从oracle演进看数据库技术的发展的过程)
-
数据库技术发展本质上是应用需求驱动与基础架构演进的双向奔赴,如何分析其技术发展的脉络和方向?考虑到oracle数据库仍然是这个领域的王者,以其为例,管中窥豹,对其从Oracle8i到23ai版本的核...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (74)
- oracle基目录 (50)
- oracle批量插入数据 (65)
- oracle事务隔离级别 (53)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)