百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

量子算法与实践——Grover算法(量子计算 google)

mhr18 2024-10-16 09:54 41 浏览 0 评论

概述

量子计算机的算力可体现为量子计算机可实现并行计算, Grover算法(Quantum Search Algorithm)是量子计算领域的主要算法之一。Grover算法是由Grover于1996年提出的平方根加速的随机数据库量子搜索算法,旨在利用量子计算机进行比经典计算机更快的数据搜索。在数据库足够混乱且没有具体的数据结构限定的条件下,Grover算法可以快速解决从N个未分类的客体中寻找出某个特定个体的问题。除搜索时间远短于经典计算外,其强大之处还在于Grover算法的公式可适用于很多问题,比如:密码学、矩阵和图形问题、优化以及量子机器学习等。本文将从Grover算法的实现原理、应用与实践等方面介绍Grover算法。

1.Grover算法理论

Grover算法的量子线路有一个重要的基本单元,也称为Grover迭代。一个完整的Grover量子线路会包含一个或者多个Grover迭代单元。学习Grover算法需要具备基本的线性代数基础、数字电路概念和量子相关基本概念等知识。

假设某个地区人口总数为N,现需从N个人中找到一个特定的目标X。在经典计算机中需要对N个人进行遍历,时间复杂度为O(N),即最好情况下一次即可找到目标人物,最坏情况下需要寻找N次才能找到目标人物X。而利用Grover算法寻找目标X,时间复杂度为O(√N)。

Grover算法搜寻目标对象的逻辑大致为在无序的数据集合中寻找X,首先制备全部量子态的叠加态,然后循环进行操作使得目标态的符号反向(Oracle算符)且态的符号也反向(Grover算符);在执行次操作后,量子态被旋转至目标态;最后测量所得结果概率发现X出现的概率趋近于1,此时即可通过Grover算法找到目标X。一般地,如果想要在N个信息找到对应信息,进行4/pie*√N次操作,进行测量得到的概率趋于1。因此,Grover算法进行无序搜索主要步骤有三个:制备量子态、G迭代、测量。

2.Grover算法步骤

Grover算法总体分为三大步骤:制备量子态、标记目标进行相位翻转并放大概率振幅、测量。Grover算法利用量子特性将目标值与其余值进行区分,采用验证是否符合条件的方式而不是线性查找的方式逼近正确答案。

2.1量子态制备

首先在量子电路中准备n个搜索用的量子比特,则处于基态的个数为N。将这N个基态从0到N-1开始编号,构成集合{∣i?}={∣0?,∣1?,......∣N?1?}。设其中符合搜索条件的有M个,则不符合条件的个数为N-M个。编号后再对每个量子比特基态做Hadamard门变换构造均匀叠加态。此时,将所有不符合条件的N-M个基态叠加,组成一个叠加态的状态向量,记为|α〉;将所有符合条件的M个基态叠加,组成一个状态向量记为|β〉。|α〉与|β〉构成一组正交向量,|φ〉是所有基态无差别叠加的状态。


2.2Grover迭代

通过一系列Hadamard门操作创建量子叠加态之后,首先需要构建一个量子门Oracle。Oracle满足O?O = OO? = I,其中I为单位矩阵,O?表示,先对O做转置,再对O中的每个元素取共轭。Oracle主要作用是区分目标数据和其他数据,对量子状态做酉变换改变目标值的相位。具体操作如下公式:

此时,再引入一个判断函数f(x),设如果x满足f(x)=1,则x是符合条件的搜索目标;否则x不是搜索目标,即如果f(x)=0则x不是目标对象。

,公式中当f(x)=1符号不变,f(x)=0时符号反向。


以上步骤已经完成标记目标对象操作,接下来需要做G迭代,主要作用是放大概率振幅。通过多次G迭代后,目标概率振幅被放大趋近于1。,其中O为Oracle算符,I为单位算符。实现多次G迭代的作用效果如下图:

2.3测量

在做完Grover变换后,对结果进行测量发现搜索目标的概率振幅最大趋近于1,即完成整个搜索过程。Grover算法是一种算法思想,旨在利用量子固有的特性在大量数据中进行搜索。但Grover算法在实际应用中也有一定局限性,比如在实际构造Oracle时,Oracle计算步骤数量超过算法所保存的步骤数量,从而导致Grover算法比经典算法慢;当数据库足够混乱且没有具体的数据结构时,Grover算法才能比经典算法更适用。

3.Grover算法应用与实践

Grover算法是量子算法的典型算法之一,如IBM推出的Qiskit、本源量子公司推出的QPanda量子计算编程框架、启科量子的量子编程框架软件QuTrunk均在自主开发的量子产品中实现Grover算法。QuTrunk自主研发的Python量子编程语言框架,包括量子编程API、量子命令转译、量子计算后端接口等,所有支持Python编程的IDE均可安装使用。目前QuTrunk以QuSprout作为后端,还可扩展支持更多后端。QuTrunk对量子编程相关的基本概念做了代码层面的抽象封装和实现,如量子比特和量子门等等概念可对应到QuTrunk框架内相应的python模块。QuTrunk项目为量子编程工作提供量子底层的软件架构和体系,形成一套统一的量子编程规范。

3.1 IBM Qiskit Grover算法部分代码示例

Qiskit是IBM发布的一个专为量子电路与算法打造的开源框架,开发者可使用Qiskit用Python编写量子算法。以下为Qiskit实现Grover算法部分代码示例:

步骤1:设N=3,制备量子态

grover=QuantumCircuit(3,3)
grover.h(0)
grover.h(1)
grover.h(2)

步骤2:确定搜索目标并实行相位翻转

target=input()
if target[-1]=='0':
    grover.x(0)
if target[-2]=='0':
    grover.x(1)
if target[-3]=='0':
    grover.x(2)

步骤3:运行grover算法放大搜索目标概率

grover.h([0,1,2])
grover.x([0,1,2])
grover.h(0)
grover.ccx(2,1,0)
grover.h(0)
grover.x([0,1,2])
grover.h([0,1,2])

步骤4:进行结果测量

grover.measure([0,1,2],[0,1,2])

3.2 本源量子QPanda Grover算法部分代码示例

QPanda是由本源量子开发的开源量子计算编程框架,它可以用于构建、运行和优化量子算法。以下为Qpanda实现Grover搜索算法代码示例:

步骤1:设置算法条件

    template <class T>
    QProg grover_alg_search_from_vector(const std::vector<T> &data_vec,
    ClassicalCondition condition,
    std::vector<size_t> &result_index_vec,
    QuantumMachine * qvm,
    size_t repeat = 2)
    QVec measure_qubits;
    QProg grover_prog = build_grover_alg_prog(data_vec, condition, qvm, measure_qubits, repeat);
    auto c = qvm->allocateCBits(measure_qubits.size());
    grover_prog << MeasureAll(measure_qubits, c);

步骤2:测量

    //measure
    //PTrace("Strat pmeasure.\n");
    const double _shot = 2048;
    auto result = qvm->runWithConfiguration(grover_prog, c, _shot);
    prob_dict _double_result;
    for (auto const& _i : result) {
        _double_result.emplace(std::make_pair(_i.first, (double)_i.second / _shot));
    }

步骤3:输出结果

    //get result
    result_index_vec = search_target_from_measure_result(_double_result, measure_qubits.size());
    return grover_prog;
QPANDA_END

4.启科量子QuTrunk Grover算法的应用于实践

4.1启科量子QuTrunk产品简介

QuTrunk是启科量子自主研发的量子编程框架,基于Python提供量子编程API,对量子编程相关的基本概念做了代码层面的抽象封装和实现。量子编程相关概念对应到QuTrunk框架内相应的Python模块,比如QCircuit可实现量子线路,Qubit可实现量子比特,Qureg可实现量子寄存器;Command对应每个量子门操作的指令,Backend代表运行量子线路的后端模块,Gate模块里面实现了各类基础量子门操作,下面对这些主要模块做进一步说明:

  • ? QCircuit: 表示量子线路,维护对所有量子比特的各种门操作及操作时序,代表了整个量子算法的实现,在QuSprout编辑器中输入from QuTrunk.core.circuit import QCircuit, InitState
  • ? Qubit:代表单个量子比特,每个量子比特默认持有一个经典比特,方便存放量子比特对测量结果,例如num_qubits = 15,输出print("num_qubits:", num_qubits, "num_elems:", num_elems, "num_reps:", num_reps)
  • ? Qureg: 维护若干个量子比特,用于实现一个具体的量子算法。为了获取n量子位量子寄存器的实例,必须以量子位数为参数调用主引擎的函数allocate_qureg(n),代码操作为qureg=eng.allocate_qureg(n)
  • ? Command: 每个量子门操作其背后都会转换成一个基础指令,这些指令按照时间顺序存放在QCircuit中,当整个算法结束或者需要计算当前量子线路的某种状态取值时,这些指令会被发送到指定的后端去执行。
  • ? Backend: 后端模块,用于执行量子线路,支持本地后端,QuBox后端等,可以通过指定backend参数来更改默认的模拟后端。
  • ? Gate: 量子算法基本组成单元,提供各类量子门操作,包括:H, Measure, CNOT, Toffoli, P, R, Rx, Ry, Rz, S, Sdg, T, Tdg, X, Y, Z, NOT, Swap, SqrtSwap, SqrtX, All, C, Rxx, Ryy, Rzz。在QuBranch编辑器中进行们操作所需代码输入为from QuTrunk.core.gates import H, X, C, Z

QuTrunk目前已经完成第一版开发工作,通过接入QuBox(量子计算后端设备)实现量子算法的运行,已预留API接口将可接入真实量子计算设备。

4.2启科量子QuTrunk的下载与安装

  • ? 步骤一:下载并安装QuBranch
  • ? 步骤二:点击【查看】-【命令面板】或快捷键Ctrl+Shift+P

  • ? 步骤三:输入【>quan:一键安装所需要依赖】安装Qutrunk开发包。

4.3QuTrunk实现Grover算法步骤

步骤1 首先在QuBranch中导入随机数模块和QuTrunk中的部分模块

    import math
    import random
    from numpy import pi
    from qutrunk.circuit import QCircuit
    from qutrunk.circuit.gates import Measure, All
    from qutrunk.circuit.ops import QSP, QAA
  • ? 步骤2 调用量子相位准备运算符QSP和量子振幅这么大运算符QAA
    class QSP(Operator): ...
    class QAA(Operator): ...
  • ? 步骤3 运行Grover算法,不断进行G迭代直至搜索出目标值
    num_qubits = 10
    num_elems = 2**num_qubits
    num_reps = math.ceil(pi / 4 * math.sqrt(num_elems))
    print("num_qubits:", num_qubits, "num_elems:", num_elems, "num_reps:", num_reps)
    sol_elem = random.randint(0, num_elems - 1)
    print(f"target state: |{str(sol_elem)}>")
    ...
    QSP("+") * qureg
    QAA(num_reps, sol_elem) * qureg

? 步骤4 输出运行结果 从结果中可观察到搜索的量子比特数为10Qubit、量子门数为11726个、总的运行时间为0.2063s(其中QuBox运行时间为0.1982s,QuTrunk运行时间仅为0.0081s)。

    Counter(quit=10)
    qubits = 10
    quantum_gates = 1320
    total_time = 0.20626401901245117
    qutrunk_time = 0.008100509643554688
    backend_time = 0.19816350936889648

以上Grover算法中生成随机数目标为303,最终搜索结果概率峰值为0.9927接近于1。在搜索过程中,当此概率出现峰值且第一次下降时即停止搜索,认为已经找到目标值即为303。

    ...
    prob of state |303> = 0.9732419406366319
    prob of state |303> = 0.9896710602298116
    prob of state |303> = 0.9984565412943175
    prob of state |303> = 0.9994612447443189
    prob of state |303> = 0.9926694874189682
    measure result: 303

4.结尾

总体而言,Grover算法只有在满足数据未分类的情况下,其计算时间才会优于经典计算。其次,执行Grover算符需要对唯一的量子态做相位翻转,这通常需要一个尺度正比于比特数平方的算法,在实际实现中比较困难并不利于Grover算法实现。然而,Grover算法思想的精髓之处正是利用量子的叠加特性对大量数据进行验证。因此面对足够庞大且没有数据结构的数据库时,Grover算法才能充分发挥其算力优势。启科量子已经自建了量子算法库QuFlower,包括基础、中级、高级三个级别的量子算法,以供程序调用,从而降低量子编程难度。

QuTrunk项目开源地址Github地址:

http://github.com/queco-quantum

相关推荐

Java面试宝典之问答系列(java面试回答)

以下内容,由兆隆IT云学院就业部根据多年成功就业服务经验提供:1.写出从数据库表Custom中查询No、Name、Num1、Num2并将Name以姓名显示、计算出的和以总和显示的SQL。SELECT...

ADG (Active Data Guard) 数据容灾架构下,如何配置 Druid 连接池?

如上图的数据容灾架构下,上层应用如果使用Druid连接池,应该如何配置,才能在数据库集群节点切换甚至主备数据中心站点切换的情况下,上层应用不需要变动(无需修改配置也无需重启);即数据库节点宕机/...

SpringBoot多数据源dynamic-datasource快速入门

一、简介dynamic-datasourc是一个基于SpringBoot的快速集成多数据源的启动器,其主要特性如下:支持数据源分组,适用于多种场景纯粹多库读写分离一主多从混合模式。支持...

SpringBoot项目快速开发框架JeecgBoot——项目简介及系统架构!

项目简介及系统架构JeecgBoot是一款基于SpringBoot的开发平台,它采用前后端分离架构,集成的框架有SpringBoot2.x、SpringCloud、AntDesignof...

常见文件系统格式有哪些(文件系统类型有哪几种)

PART.01常见文件系统格式有哪些常见的文件系统格式有很多,通常根据使用场景(Windows、Linux、macOS、移动设备、U盘、硬盘等)有所不同。以下是一些主流和常见的文件系统格式及其特点:一...

Oracle MySQL Operator部署集群(oracle mysql group by)

以下是使用OracleMySQLOperator部署MySQL集群的完整流程及关键注意事项:一、部署前准备安装MySQLOperator通过Helm安装Operator到Ku...

LibreOffice加入&#34;转向Linux&#34;运动

LibreOffice项目正准备削减部分Windows支持,并鼓励用户切换到Linux系统。自Oracle放弃OpenOffice后,支持和指导LibreOffice开发的文档基金会对未来有着明确的观...

Oracle Linux 10发布:UEK 8.1、后量子加密、增强开发工具等

IT之家6月28日消息,科技媒体linuxiac昨日(6月27日)发布博文,报道称OracleLinux10正式发布,完全二进制兼容(binarycompatibility...

【mykit-data】 数据库同步工具(数据库同步工具 开源)

项目介绍支持插件化、可视化的数据异构中间件,支持的数据异构方式如下MySQL<——>MySQL(增量、全量)MySQL<——>Oracle(增量、全量)Oracle...

oracle关于xml的解析(oracle读取xml节点的属性值)

有时需要在存储过程中处理xml,oracle提供了相应的函数来进行处理,xmltype以及相关的函数。废话少说,上代码:selectxmltype(SIConfirmOutput).extract...

如何利用DBSync实现数据库同步(通过dblink同步数据库)

DBSync是一款通用型的数据库同步软件,能侦测数据表之间的差异,能实时同步差异数据,从而使双方始终保持一致。支持各种数据库,支持异构同步、增量同步,且提供永久免费版。本文介绍其功能特点及大致用法,供...

MYSQL存储引擎InnoDB(八十):InnoDB静态数据加密

InnoDB支持独立表空间、通用表空间、mysql系统表空间、重做日志和撤消日志的静态数据加密。从MySQL8.0.16开始,还支持为模式和通用表空间设置加密默认值,这允许DBA控制在这些模...

JDK高版本特性总结与ZGC实践(jdk高版本兼容低版本吗)

美团信息安全技术团队核心服务升级JDK17后,性能与稳定性大幅提升,机器成本降低了10%。高版本JDK与ZGC技术令人惊艳,且JavaAISDK最低支持JDK17。本文总结了JDK17的主要...

4 种 MySQL 同步 ES 方案,yyds!(两个mysql数据库自动同步的方法)

本文会先讲述数据同步的4种方案,并给出常用数据迁移工具,干货满满!不BB,上文章目录:1.前言在实际项目开发中,我们经常将MySQL作为业务数据库,ES作为查询数据库,用来实现读写分离,...

计算机Java培训课程包含哪些内容?其实就这六大块

不知不觉秋天已至,如果你还处于就业迷茫期,不如来学习Java。对于非科班小白来说,Java培训会更适合你。提前了解下计算机Java培训课程内容,会有助于你后续学习。下面,我就从六个部分为大家详细介绍...

取消回复欢迎 发表评论: