百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术教程 > 正文

见招拆招:破解Oracle数据库密码(破解oracle登陆密码)

mhr18 2024-10-12 04:43 34 浏览 0 评论

一.概要

本文主要目的,希望通过分享解密方法引起相关人士对网络安全的重视。数据库安全绝不单只数据库本身的安全,和数据库所处的整个环境都有密切关系。

本文所说的破解oracle9i、oracle10g、oracle11g密码,特指通过对oracle数据库和客户端之间通讯包进行处理破解出oracle密码明文,这有别于对oracle数据库中存储的16位密码进行破解。截获网络信息往往比登入数据库找到密码密文更易操作、更难防范、隐秘性更高。

本文会说明oracle最常见的3个版本的具体算法,但是不会揭露算法内部细节。

二.背景

随着信息通讯的发展,网络变得越来越复杂,同时也越来越不安全。如下图所示:从客户端到数据库的过程中,攻击者有越来越多的攻击目标选择。无论在哪一环节成功对网络进行拦截或者监听都会获得oracle数据库和客户端之间的通讯包。如果通讯包中恰好含有用户信息,如果不进行加密处理这将是灾难性的事件。本文依oracle的3个版本为例(9i 10g11g)。分别说明核心通讯内容加密的方法和发展趋势。

三.oracle加密原理

当Oracle发起接后,Oracle客户端向oracle数据库发送自己版本号,包含的加密算法等信息。最终2边确定使用什么加密算法。然后进行O3logon验证。O3logon验证是一种查询-响应协议,他利用DES加密技术保护这个会话的密钥(sesskey),保证sesskey不会在网络中传输,所以即使有人监听网络也不会暴露核心密钥。其中O3logon验证的核心是sesskey。

首先服务器通过oracle_hash(不同的版本不一样,在9i中是用户名+密码,再进行sha1运算)和sesskey(一个随机数)算出服务器端的S_auth_sesskey.

客户端拿到服务器的S_auth_sesskey后通过手上的散列值(这个散列值是用与服务器端一样的方法计算的orcale_hash)算出数据库所选择的随机sesskey。

客户端使用sesskey 生成新的散列值,以该值为密钥与明文password进行运算得到秘文password; 然后将秘文password发送到服务器端。

服务器端收到password;通过sesskey生成散列值密钥,对秘文password进行解密得到密码明文,如果与库中存储一致则登陆成功。(参见下图)

四.实例

上面主要是原理的说明,下面就3个版本的数据库进行分别说明(他们既有相同,也有不同的地方)。

oracle9i:

本文默认你已经通过某些方式取得了一个含有Oracle登录信息的网络通讯包。省略掉前面和破密关系不大的信息在数据包中寻找到3个相关信息分别是数据库发送给客户端的AUTH_SESSKEY 、用户名明文和AUTH_PASSWORD。

客户端在得到auth_sesskey后,客户端运算出oracle_hash ,首先对orcale_hash做SHA1运算会得到服务器端的散列值。以服务器端散列值为密钥进行3DES解密,可以把服务器端发给客户端的AUTH_SESSKEY转化成本次回话的sesskey。

服务器端在得到auth_password后,把sesskey按照一定的方法做SHA1运算得到客户端散列值。客户端散列值和AUTH_PASSWORD通过3DES可以算出存于数据库中的密码密文。最后客户端散列值和密码密文进行运算可以还原回密码明文。

由于9i是采用把用户名明文和密码明文按照顺序排列在一起对整个字符串做处理生成oracle_hash。由于添加的参数是固定的所以即使不是同一台数据库只要加入的账号+密码相同则,他们的sesskey是相同的。例如用户名aabbcc密码ccddee和用户名aabbcccc密码ddee是一样的sesskey。

参考代码

intORACLE_Hash(char*username,char*passwd,intpasswd_len,unsignedchar*oracle_hash){charToEncrypt[256];chartemp[256];DES_cblockiv,iv2;DES_key_scheduleks1,ks2;intlen=0;intj,ulen,plen;memset(ToEncrypt,0,sizeof(ToEncrypt));strupr(username);strupr(passwd);ulen=strlen(username);plen=passwd_len;for(len=1,j=0;j<ulen;len++,j++){ToEncrypt[len]=username[j];len++;}for(j=0;j<plen;len++,j++){ToEncrypt[len]=passwd[j];len++;}len=len-1;memset(iv,0,8);memset(iv2,0,8);DES_set_key((DES_cblock*)deskey_fixed,&ks1);DES_ncbc_encrypt((unsignedchar*)ToEncrypt,(unsignedchar*)temp,len,&ks1,&iv,DES_ENCRYPT);DES_set_key((DES_cblock*)&iv,&ks2);DES_ncbc_encrypt((unsignedchar*)ToEncrypt,(unsignedchar*)temp,len,&ks2,&iv2,DES_ENCRYPT);memcpy(oracle_hash,iv2,8)returnTRUE;}

注:以上的代码并未使用sha1,而是采用了des,与前文介绍不一致。而且其中deskey_fixed是什么?是下文的fixed31吗?

intORACLE_TNS_Decrypt_Password_9i(unsignedcharOracleHash[8],unsignedcharauth_sesskey[16],unsignedcharauth_password[16],char*decrypted){unsignedcharfixed31[]={0xA2,0xFB,0xE6,0xAD,0x4C,0x7D,0x1E,0x3D,0x6E,0xB0,0xB7,0x6C,0x97,0xEF,0xFF,0x84,0x44,0x71,0x02,0x84,0xAC,0xF1,0x3B,0x29,0x5C,0x0F,0x0C,0xB1,0x87,0x75,0xEF};unsignedchartriple_des_key[64];unsignedcharsesskey[16];unsignedcharobfuscated[16];intPassLen=16;ORACLE_TNS_Create_Key_SHA1(OracleHash,8,fixed31,sizeof(fixed31),24,triple_des_key);ORACLE_TNS_Decrypt_3DES_CBC(auth_sesskey,16,triple_des_key,sesskey);ORACLE_TNS_Create_Key_SHA1(sesskey,16,NULL,0,40,triple_des_key);ORACLE_TNS_Decrypt_3DES_CBC(auth_password,16,triple_des_key,obfuscated);ORACLE_TNS_DeObfuscate(triple_des_key,obfuscated,&PassLen);memcpy(decrypted,obfuscated,PassLen);returnPassLen;}

oracle10g

10g在9i的基础上进行了很大的改变。同样还是假设我们已经取得一个含有Oracle登录信息的网络通讯包。省略掉前面和破密关系不大的信息在数据包中寻找到4个相关信息分别是数据库发送给客户端的S_AUTH_SESSKEY、用户名明文、客户端发送给服务器的C_AUTH_SESSKEY和AUTH_PASSWORD。

首先假设取得了oracle_hash,这里不同于9i。9i虽然算了2个不同的散列值。但由于2个散列值都是通过固定数据和oracle_hash算出来的,所以难免被破解,而且效率不高。从Oracle10g开始,Oracle调整了策略,客户端和数据库分别以oracle_hash为基础生成S_AUTH_SESSKEY和C_AUTH_SESSKEY。

客户端对传过来的S_AUTH_SESSKEY。做AES128解密处理拿到server_sesskey。把server_sesskey和自己的client_sesskey做md5生成combine。用combine生成AUTH_PASSWORD。

服务器端最后用combine对AUTH_PASSWORD解密。对比密码,如果一致登陆成功。

10g在对于sesskey的处理上取得了长足的改善,但是对oracle_hash的产生上依旧延续了9i的方式。采用用户名和密码进行拼接组成最关键的字符串。对该字符串进行DES处理。

参考代码

intORACLE_TNS_Decrypt_Password_10g(unsignedcharOracleHash[8],unsignedcharauth_sesskey[32],unsignedcharauth_sesskey_cli[32],unsignedchar*auth_password,intauth_password_len,char*decrypted){intpasslen=0;unsignedcharaes_key_bytes[32];unsignedchardecrypted_server_sesskey[32];unsignedchardecrypted_client_sesskey[32];unsignedcharcombined_sesskeys[16];chardecrypted_password[64];memset(aes_key_bytes,0,sizeof(aes_key_bytes));memcpy(aes_key_bytes,OracleHash,8);ORACLE_TNS_Decrypt_AES128_CBC(aes_key_bytes,auth_sesskey,32,decrypted_server_sesskey);ORACLE_TNS_Decrypt_AES128_CBC(aes_key_bytes,auth_sesskey_cli,32,decrypted_client_sesskey);ORACLE_TNS_Combine_SessKeys(&decrypted_server_sesskey[16],&decrypted_client_sesskey[16],combined_sesskeys);ORACLE_TNS_Decrypt_AES128_CBC(combined_sesskeys,auth_password,auth_password_len,(unsignedchar*)decrypted_password);passlen=terminate_ascii_string(&decrypted_password[16],auth_password_len-16);if(passlen!=-1)strncpy(decrypted,&decrypted_password[16],passlen);returnpasslen;}

oracle11g

11g在10g的基础上进行了一定的改变。同样还是假设我们已经取得一个含有Oracle登录信息的网络通讯包。省略掉前面和破密关系不大的信息在数据包中寻找到4个相关信息分别是数据库发送给客户端的S_AUTH_SESSKEY、AUTH_VFR_DATA、客户端发送给服务器的C_AUTH_SESSKEY和AUTH_PASSWORD。

依旧假设取得了Oracle_hash,11g基本同于10g,客户端和数据库分别以Oracle_hash为基础生成S_AUTH_SESSKEY和C_AUTH_SESSKEY。客户端对传过来的S_AUTH_SESSKEY。做AES192解密处理拿到server_sesskey。把server_sesskey和自己的client_sesskey做md5生成combine。用combine生成AUTH_PASSWORD。服务器端最后用combine对AUTH_PASSWORD解密。对比密码,如果一致登陆成功。

11g最大的变化在生成Oracle_hash上采取了和10g不同的策略。Oracle 11g为了提高Oracle_hash的安全性,多引入了AUTH_VFR_DATA这个随机值。取消了明文用户名。每个会话的AUTH_VFR_DATA都不同。从根本上避免9i、10g同字符串(用户名+密码组成的字符串)带来的无论哪台机器oracle_hash一致的巨大安全隐患。

参考代码

voidORACLE_MixCase_Hash(char*passwd,intpasswd_len,unsignedcharsalt[10],unsignedchar*oracle_mixcase_hash){unsignedcharto_hash[256];memcpy(to_hash,passwd,passwd_len);memcpy(to_hash+passwd_len,salt,10);SHA_CTXctx;SHA1_Init(&ctx);SHA1_Update(&ctx,to_hash,passwd_len+10);SHA1_Final(oracle_mixcase_hash,&ctx);}

五.总结

从Oracle9i到Oracle11g的变化,我们可以清晰得看出oracle调整的思路,就是更安全。从11g开始,oracle和密码相关登陆信息全部采用了密文。有效地加大了破解难度。我们身为IT软件从业者和安全行业从业者,应该向Oracle学习,不单单重视软件本身的安全,同时也要对环境有一定的抵抗力。一定注意防止网络监听,设计SID的时候尽量避免ORCL、TEST等常用名。端口号尽量不要选用1521 和1523来增加扫描难度。使用复杂密码,定期更换密码等都会有助于oracle的安全

(本文摘自:freebuf)

相关推荐

订单超时自动取消业务的 N 种实现方案,从原理到落地全解析

在分布式系统架构中,订单超时自动取消机制是保障业务一致性的关键组件。某电商平台曾因超时处理机制缺陷导致日均3000+订单库存锁定异常,直接损失超50万元/天。本文将从技术原理、实现细节、...

使用Spring Boot 3开发时,如何选择合适的分布式技术?

作为互联网大厂的后端开发人员,当你满怀期待地用上SpringBoot3,准备在项目中大显身手时,却发现一个棘手的问题摆在面前:面对众多分布式技术,究竟该如何选择,才能让SpringBoot...

数据库内存爆满怎么办?99%的程序员都踩过这个坑!

你的数据库是不是又双叒叕内存爆满了?!服务器监控一片红色警告,老板在群里@所有人,运维同事的电话打爆了手机...这种场景是不是特别熟悉?别慌!作为一个在数据库优化这条路上摸爬滚打了10年的老司机,今天...

springboot利用Redisson 实现缓存与数据库双写不一致问题

使用了Redisson来操作Redis分布式锁,主要功能是从缓存和数据库中获取商品信息,以下是针对并发时更新缓存和数据库带来不一致问题的解决方案1.基于读写锁和删除缓存策略在并发更新场景下,...

外贸独立站数据库炸了?对象缓存让你起死回生

上周黑五,一个客户眼睁睁看着服务器CPU飙到100%——每次页面加载要查87次数据库。这让我想起2024年Pantheon的测试:Redis缓存能把WooCommerce查询速度提升20倍。跨境电商最...

手把手教你在 Spring Boot3 里纯编码实现自定义分布式锁

为什么要自己实现分布式锁?你是不是早就受够了引入各种第三方依赖时的繁琐?尤其是分布式锁这块,每次集成Redisson或者Zookeeper,都得额外维护一堆配置,有时候还会因为版本兼容问题头疼半...

如何设计一个支持百万级实时数据推送的WebSocket集群架构?

面试解答:要设计一个支持百万级实时数据推送的WebSocket集群架构,需从**连接管理、负载均衡、水平扩展、容灾恢复**四个维度切入:连接层设计-**长连接优化**:采用Netty或Und...

Redis数据结构总结——面试最常问到的知识点

Redis作为主流的nosql存储,面试时经常会问到。其主要场景是用作缓存,分布式锁,分布式session,消息队列,发布订阅等等。其存储结构主要有String,List,Set,Hash,Sort...

skynet服务的缺陷 lua死循环

服务端高级架构—云风的skynet这边有一个关于云风skynet的视频推荐给大家观看点击就可以观看了!skynet是一套多人在线游戏的轻量级服务端框架,使用C+Lua开发。skynet的显著优点是,...

七年Java开发的一路辛酸史:分享面试京东、阿里、美团后的心得

前言我觉得有一个能够找一份大厂的offer的想法,这是很正常的,这并不是我们的饭后谈资而是每个技术人的追求。像阿里、腾讯、美团、字节跳动、京东等等的技术氛围与技术规范度还是要明显优于一些创业型公司...

mysql mogodb es redis数据库之间的区别

1.MySQL应用场景概念:关系型数据库,基于关系模型,使用表和行存储数据。优点:支持ACID事务,数据具有很高的一致性和完整性。缺点:垂直扩展能力有限,需要分库分表等方式扩展。对于复杂的查询和大量的...

redis,memcached,nginx网络组件

1.理解阻塞io,非阻塞io,同步io,异步io的区别2.理解BIO和AIO的区别io多路复用只负责io检测,不负责io操作阻塞io中的write,能写多少是多少,只要写成功就返回,譬如准备写500字...

SpringBoot+Vue+Redis实现验证码功能

一个小时只允许发三次验证码。一次验证码有效期二分钟。SpringBoot整合Redis...

AWS MemoryDB 可观测最佳实践

AWSMemoryDB介绍AmazonMemoryDB是一种完全托管的、内存中数据存储服务,专为需要极低延迟和高吞吐量的应用程序而设计。它与Redis和Memcached相似,但具有更...

从0构建大型AI推荐系统:实时化引擎从工具到生态的演进

在AI浪潮席卷各行各业的今天,推荐系统正从幕后走向前台,成为用户体验的核心驱动力。本文将带你深入探索一个大型AI推荐系统从零起步的全过程,揭示实时化引擎如何从单一工具演进为复杂生态的关键路径。无论你是...

取消回复欢迎 发表评论: