Redis实现分页+多条件模糊查询组合方案
mhr18 2024-10-11 12:44 28 浏览 0 评论
导言
Redis是一个高效的内存数据库,它支持包括String、List、Set、SortedSet和Hash等数据类型的存储,在Redis中通常根据数据的key查询其value值,Redis没有模糊条件查询,在面对一些需要分页、排序以及条件查询的场景时(如评论,时间线,检索等),只凭借Redis所提供的功能就不太好不处理了。
本文不对Redis的特性做过多赘述。由于之前基于业务问题需要实现基于Redis的条件查询和分页功能,在百度上查询了不少文章,基本不是只有分页功能就是只有条件查询功能的实现,缺少两者组合的解决方案。因此,本文将基于Redis提供条件查询+分页的技术解决方案。
注:本文只提供实现思路,并不提供实现的代码
本文将从四个部分进行说明:
- 分页实现
- 模糊条件查询实现
- 分页和模糊条件查询的组合实现
- 优化方案
大家可以直接跳到自己需要的部分进行阅读。
Redis的分页实现
我们通常习惯于在Mysql、Oracle这样持久化数据库中实现分页查询,但是基于某些特殊的业务场景下,我们的数据并未持久化到了数据库中或是出于查询速度上的考虑将热点数据加载到了缓存数据库中。因此,我们可能需要基于Redis这样的缓存数据库去进行分页查询。
Redis的分页查询的实现是基于Redis提供的ZSet数据结构实现的,ZSet全称为Sorted Set,该结构主要存储有序集合。下面是它的指令描述以及该指令在分页实现中的作用:
- ZADD:SortedSet的添加元素指令ZADD key score member [[score,member]…]会给每个添加的元素member绑定一个用于排序的值score,SortedSet就会根据score值的大小对元素进行排序。我们为通常习惯于将数据的时间属性当作score用于排序,当然大家也可以根据具体的业务场景去选择排序的目标。
- ZREVRANGE:SortedSet中的指令ZREVRANGE key start stop可以返回指定区间内的成员,可以用来做分页。
- ZREM:SortedSet的指令ZREM key member可以根据key移除指定的成员,能满足删评论的要求。
所以SortedSet用来做分页是非常适合的。下面是分页实现的演示图,包含插入新记录后的查询情况。
事实上,Redis中的List结构也是可以实现分页,但List无法实现自动排序,并且Zset还可以根据score进行数据筛选,取出目标score区间内数据。
所以在实现上,ZSet往往更加适合我们。当然如果你需要插入重复数据的情况下,分页就可能就需要借助List来实现了。具体使用那种结构来实现分页还是需要根据实际的业务场景来进行选择的。
Redis的多条件模糊查询实现
Redis是key-value类型的内存数据库,通过key直接取数据虽然很方便,但是并未提供像mysql那样方便的sql条件查询支持。因此我们需要借助Redis提供的结构和功能去自己实现模糊条件查询功能。
事实上,Redis的模糊条件查询是基于Hash实现的,我们可以将数据的某些条件值作为hash的key值,并数据本身作为value进行存储。然后通过Hash提供的HSCAN指令去遍历所有的key进行筛选,得到我们符合条件的所有key值(hscan可以进行模式匹配)。
为了方便,我们通常将符合条件的key全部放入到一个Set或是List中。这样一来,我们就可以根据得到的key值去取出相应的数据了。下面是模糊查询的演示图(其中field中的命名规则为<id>:<姓名>:<性别>,value为用户详情的json串)。
查询所有性别为女的用户
查询所有名字中姓阿的用户
HSCAN虽然为我们提供了模式匹配的功能,但这种匹配是基于遍历实现的,每一次匹配都需要遍历全部的key,效率上并不高。因此在下面一节会这方面进行补充,本节只谈如何实现模糊匹配。
Redis的分页+多条件模糊查询组合实现
前面分别单独叙述了如何实现Redis的分页和多条件某查询。在实际使用中,单独使用ZSet实现分页已经能够展现不错的性能了,但存在一个问题是我们所分页的数据往往是伴随着一些动态的筛选条件的,而ZSet并不提供这样的功能。
面对这种情况,我们通常有两种解决方案:
- 如果数据已经存储在了持久化数据库中,我们可以每次在数据库中做好条件查询再将数据放入Redis中进行分页。
- 在Redis中实现多条件模糊查询并分页。
前者方案其实是一个不错的选择,但缺点在于数据有时候并不一定都在持久化数据库中。在有些业务场景下,我们的数据为了展现更好的并发性以及高响应,我们的数据会先放置在缓存数据库中,等到某个时间或者满足某种条件时再持久化到数据库中。
在这种情况下我们第一个方案就不起作用了,需要使用第二个方案。因此,下面将介绍如何实现多条件模糊查询的基础上进行分页。
实现思路
首先我们可以采用多条件模糊查询章节所说的方式,将我们所涉及到的条件字段作为hash的field,而数据的内容则作为对应value进行存储(一般以json格式存储,方便反序列化)。
我们需要实现约定好查询的格式,用前面一节的例子来说,field中的命名规则为<id>:<姓名>:<性别>,我们每次可以通过"*"来实现我们希望的模糊匹配条件,比如“*:*:男”就是匹配所有男性数据,“100*:*:*”就是匹配所有id前缀为100的用户。
当我们拿到了匹配串后我们先去Redis中寻找是否存在以该匹配串为key的ZSet,如果没有则通过Redis提供的HSCAN遍历所有hash的field,得到所有符合条件的field,并将其放入一个ZSet集合,同时将这个集合的key设置为我们的条件匹配串。如果已经存在了,则直接对这个ZSet进行分页查询即可。对ZSet进行分页的方式已经在前面叙述过了。通过这样的方式我们就实现了最简单的分页+多条件模糊查询。
上图中,由于并未在缓存数据库中找到符合的ZSet集合,我们将根据匹配串生成一个新的集合用于分页。
性能优化方案
虽然上文实现了多条件模糊查询+分页的功能,但是在时间开发中,我们不能无限制的生成新的集合,因为匹配串是很多样化的,这会给缓存带来巨大的压力。
因此我们在生成集合时可以赋予这个集合一个过期时间,到期集合会自动销毁。因为根据时间局部性原理,我们在一段时间内不访问的数据大概率在很长一顿时间内也不会再访问。而对于命中的集合,我们将更新其过期时间。
同时,我们数据的实时性也是一个问题,因为我们的集合是在生成集合时的Hash内容决定的,对于新插入到Hash的数据,集合是无法探知的,因此有两种解决方案:
- 第一种是插入到Hash时同时再插入到其他相应的集合中,保证数据一直是最新的,这种方式需要增加特殊前缀用于识别,否则我们也不清楚到底要插入到哪些集合中。
- 第二种方式是定时更新,这种方式比较省力,但无法保证分页数据的实时性。因此具体怎么选择还是取决于业务场景。
总结
本文大概地描述了实现分页和多条件模糊查询的方案,希望能够对大家有所帮助。
相关推荐
- 订单超时自动取消业务的 N 种实现方案,从原理到落地全解析
-
在分布式系统架构中,订单超时自动取消机制是保障业务一致性的关键组件。某电商平台曾因超时处理机制缺陷导致日均3000+订单库存锁定异常,直接损失超50万元/天。本文将从技术原理、实现细节、...
- 使用Spring Boot 3开发时,如何选择合适的分布式技术?
-
作为互联网大厂的后端开发人员,当你满怀期待地用上SpringBoot3,准备在项目中大显身手时,却发现一个棘手的问题摆在面前:面对众多分布式技术,究竟该如何选择,才能让SpringBoot...
- 数据库内存爆满怎么办?99%的程序员都踩过这个坑!
-
你的数据库是不是又双叒叕内存爆满了?!服务器监控一片红色警告,老板在群里@所有人,运维同事的电话打爆了手机...这种场景是不是特别熟悉?别慌!作为一个在数据库优化这条路上摸爬滚打了10年的老司机,今天...
- springboot利用Redisson 实现缓存与数据库双写不一致问题
-
使用了Redisson来操作Redis分布式锁,主要功能是从缓存和数据库中获取商品信息,以下是针对并发时更新缓存和数据库带来不一致问题的解决方案1.基于读写锁和删除缓存策略在并发更新场景下,...
- 外贸独立站数据库炸了?对象缓存让你起死回生
-
上周黑五,一个客户眼睁睁看着服务器CPU飙到100%——每次页面加载要查87次数据库。这让我想起2024年Pantheon的测试:Redis缓存能把WooCommerce查询速度提升20倍。跨境电商最...
- 手把手教你在 Spring Boot3 里纯编码实现自定义分布式锁
-
为什么要自己实现分布式锁?你是不是早就受够了引入各种第三方依赖时的繁琐?尤其是分布式锁这块,每次集成Redisson或者Zookeeper,都得额外维护一堆配置,有时候还会因为版本兼容问题头疼半...
- 如何设计一个支持百万级实时数据推送的WebSocket集群架构?
-
面试解答:要设计一个支持百万级实时数据推送的WebSocket集群架构,需从**连接管理、负载均衡、水平扩展、容灾恢复**四个维度切入:连接层设计-**长连接优化**:采用Netty或Und...
- Redis数据结构总结——面试最常问到的知识点
-
Redis作为主流的nosql存储,面试时经常会问到。其主要场景是用作缓存,分布式锁,分布式session,消息队列,发布订阅等等。其存储结构主要有String,List,Set,Hash,Sort...
- skynet服务的缺陷 lua死循环
-
服务端高级架构—云风的skynet这边有一个关于云风skynet的视频推荐给大家观看点击就可以观看了!skynet是一套多人在线游戏的轻量级服务端框架,使用C+Lua开发。skynet的显著优点是,...
- 七年Java开发的一路辛酸史:分享面试京东、阿里、美团后的心得
-
前言我觉得有一个能够找一份大厂的offer的想法,这是很正常的,这并不是我们的饭后谈资而是每个技术人的追求。像阿里、腾讯、美团、字节跳动、京东等等的技术氛围与技术规范度还是要明显优于一些创业型公司...
- mysql mogodb es redis数据库之间的区别
-
1.MySQL应用场景概念:关系型数据库,基于关系模型,使用表和行存储数据。优点:支持ACID事务,数据具有很高的一致性和完整性。缺点:垂直扩展能力有限,需要分库分表等方式扩展。对于复杂的查询和大量的...
- redis,memcached,nginx网络组件
-
1.理解阻塞io,非阻塞io,同步io,异步io的区别2.理解BIO和AIO的区别io多路复用只负责io检测,不负责io操作阻塞io中的write,能写多少是多少,只要写成功就返回,譬如准备写500字...
- SpringBoot+Vue+Redis实现验证码功能
-
一个小时只允许发三次验证码。一次验证码有效期二分钟。SpringBoot整合Redis...
- AWS MemoryDB 可观测最佳实践
-
AWSMemoryDB介绍AmazonMemoryDB是一种完全托管的、内存中数据存储服务,专为需要极低延迟和高吞吐量的应用程序而设计。它与Redis和Memcached相似,但具有更...
- 从0构建大型AI推荐系统:实时化引擎从工具到生态的演进
-
在AI浪潮席卷各行各业的今天,推荐系统正从幕后走向前台,成为用户体验的核心驱动力。本文将带你深入探索一个大型AI推荐系统从零起步的全过程,揭示实时化引擎如何从单一工具演进为复杂生态的关键路径。无论你是...
你 发表评论:
欢迎- 一周热门
-
-
Redis客户端 Jedis 与 Lettuce
-
高并发架构系列:Redis并发竞争key的解决方案详解
-
redis如何防止并发(redis如何防止高并发)
-
Java SE Development Kit 8u441下载地址【windows版本】
-
开源推荐:如何实现的一个高性能 Redis 服务器
-
redis安装与调优部署文档(WinServer)
-
Redis 入门 - 安装最全讲解(Windows、Linux、Docker)
-
一文带你了解 Redis 的发布与订阅的底层原理
-
Redis如何应对并发访问(redis控制并发量)
-
Oracle如何创建用户,表空间(oracle19c创建表空间用户)
-
- 最近发表
- 标签列表
-
- oracle位图索引 (74)
- oracle批量插入数据 (65)
- oracle事务隔离级别 (59)
- oracle主从同步 (56)
- oracle 乐观锁 (53)
- redis 命令 (83)
- php redis (97)
- redis 存储 (67)
- redis 锁 (74)
- 启动 redis (73)
- redis 时间 (60)
- redis 删除 (69)
- redis内存 (64)
- redis并发 (53)
- redis 主从 (71)
- redis同步 (53)
- redis结构 (53)
- redis 订阅 (54)
- redis 登录 (62)
- redis 面试 (58)
- redis问题 (54)
- 阿里 redis (67)
- redis的缓存 (57)
- lua redis (59)
- redis 连接池 (64)