MyBatis框架 - MyBatis Plus 解决大数据量查询慢问题
mhr18 2025-02-03 14:09 17 浏览 0 评论
大数据量操作的场景大致如下:
- 数据迁移
- 数据导出
- 批量处理数据
- 列表查询所有
在实际工作中当指定查询数据过大时,我们一般使用分页查询的方式一页一页的将数据放到内存处理。但有些情况不需要分页的方式查询数据或分很大一页查询数据时,如果一下子将数据全部加载出来到内存中,很可能会发生OOM(内存溢出);而且查询会很慢,因为框架耗费大量的时间和内存去把数据库查询的结果封装成我们想要的对象(实体类)。
举例:在业务系统需要从 MySQL 数据库里读取 100w 数据行进行处理,应该怎么做?
做法通常如下:
- 常规查询: 一次性读取 100w 数据到 JVM 内存中,或者分页读取
- 流式查询: 建立长连接,利用服务端游标,每次读取一条加载到 JVM 内存(多次获取,一次一行)
- 游标查询: 和流式一样,通过 fetchSize 参数,控制一次读取多少条数据(多次获取,一次多行)
常规查询
默认情况下,完整的检索结果集会将其存储在内存中。在大多数情况下,这是最有效的操作方式,并且由于 MySQL 网络协议的设计,因此更易于实现。
举例:
假设单表 100w 数据量,一般会采用分页的方式查询:
//方式一
Page<InvoiceEntity> pageResult = baseMapper.selectPage(new Page<InvoiceEntity>(),
Wrappers.<InvoiceEntity>lambdaQuery()
.gt(InvoiceEntity::getCreatedDate, DateUtil.now()));
//方式二
@Select("SELECT bds.* FROM big_data_search bds ${ew.customSqlSegment} ")
Page<InvoiceEntity> pageList(@Param("page") Page<InvoiceEntity> page, @Param(Constants.WRAPPER) QueryWrapper<InvoiceEntity> queryWrapper);
注:该示例使用的 MybatisPlus
该方式比较简单,如果在不考虑 LIMIT 深分页优化情况下,估计你的数据库服务器就废了,或者你能等上几十分钟或几小时,甚至几天时间检索数据
流式查询
流式查询指的是查询成功后不是返回一个集合而是返回一个迭代器,应用每次从迭代器取一条查询结果。流式查询的好处是能够降低内存使用。
如果没有流式查询,我们想要从数据库取 100w 条记录而又没有足够的内存时,就不得不分页查询,而分页查询效率取决于表设计,如果设计的不好,就无法执行高效的分页查询。因此流式查询是一个数据库访问框架必须具备的功能。
MyBatis 中使用流式查询避免数据量过大导致 OOM ,但在流式查询的过程当中,数据库连接是保持打开状态的,因此要注意的是:
- 执行一个流式查询后,数据库访问框架就不负责关闭数据库连接了,需要应用在取完数据后自己关闭。
- 必须先读取(或关闭)结果集中的所有行,然后才能对连接发出任何其他查询,否则将引发异常。
MyBatis 流式查询接口
MyBatis 提供了一个叫 org.apache.ibatis.cursor.Cursor 的接口类用于流式查询,这个接口继承了 java.io.Closeable 和 java.lang.Iterable 接口,由此可知:
- Cursor 是可关闭的;
- Cursor 是可遍历的。
除此之外,Cursor 还提供了三个方法:
- isOpen(): 用于在取数据之前判断 Cursor 对象是否是打开状态。只有当打开时 Cursor 才能取数据;
- isConsumed(): 用于判断查询结果是否全部取完。
- getCurrentIndex(): 返回已经获取了多少条数据
使用流式查询,则要保持对产生结果集的语句所引用的表的并发访问,因为其 查询会独占连接,所以必须尽快处理
为什么要用流式查询?
如果有一个很大的查询结果需要遍历处理,又不想一次性将结果集装入客户端内存,就可以考虑使用流式查询;
分库分表场景下,单个表的查询结果集虽然不大,但如果某个查询跨了多个库多个表,又要做结果集的合并、排序等动作,依然有可能撑爆内存;详细研究了sharding-sphere的代码不难发现,除了group by与order by字段不一样之外,其他的场景都非常适合使用流式查询,可以最大限度的降低对客户端内存的消耗。
游标查询
对大量数据进行处理时,为防止内存泄漏情况发生,也可以采用游标方式进行数据查询处理。这种处理方式比常规查询要快很多。
当查询百万级的数据的时候,还可以使用游标方式进行数据查询处理,不仅可以节省内存的消耗,而且还不需要一次性取出所有数据,可以进行逐条处理或逐条取出部分批量处理。一次查询指定 fetchSize 的数据,直到把数据全部处理完。
Mybatis 的处理加了两个注解:@Options 和 @ResultType
// 方式一 多次获取,一次多行
@Select("SELECT bds.* FROM tb_print_invoice bds ${ew.customSqlSegment} ")
@Options(resultSetType = ResultSetType.FORWARD_ONLY, fetchSize = 1000000)
Page<InvoiceEntity> pageList(@Param("page") Page<InvoiceEntity> page, @Param(Constants.WRAPPER) QueryWrapper<InvoiceEntity> queryWrapper);
// 方式二 一次获取,一次一行
@Select("SELECT bds.* FROM big_data_search bds ${ew.customSqlSegment} ")
@Options(resultSetType = ResultSetType.FORWARD_ONLY, fetchSize = 100000)
@ResultType(InvoiceEntity.class)brvoid listData(@Param(Constants.WRAPPER) QueryWrapper<InvoiceEntity> queryWrapper, ResultHandler<InvoiceEntity> handler);
@Options
- ResultSet.FORWORD_ONLY:结果集的游标只能向下滚动
- ResultSet.SCROLL_INSENSITIVE:结果集的游标可以上下移动,当数据库变化时,当前结果集不变
- ResultSet.SCROLL_SENSITIVE:返回可滚动的结果集,当数据库变化时,当前结果集同步改变
- fetchSize:每次获取量
@ResultType
- @ResultType(BigDataSearchEntity.class):转换成返回实体类型
注意:返回类型必须为 void ,因为查询的结果在 ResultHandler 里处理数据,所以这个 hander 也是必须的,可以使用 lambda 实现一个依次处理逻辑。
注意:
虽然上面的代码中都有 @Options 但实际操作却有不同:
- 方式一是多次查询,一次返回多条;
- 方式二是一次查询,一次返回一条;
原因:
Oracle 是从服务器一次取出 fetch size 条记录放在客户端,客户端处理完成一个批次后再向服务器取下一个批次,直到所有数据处理完成。
MySQL 是在执行 ResultSet.next() 方法时,会通过数据库连接一条一条的返回。flush buffer 的过程是阻塞式的,如果网络中发生了拥塞,send buffer 被填满,会导致 buffer 一直 flush 不出去,那 MySQL 的处理线程会阻塞,从而避免数据把客户端内存撑爆。
非流式查询和流式查询区别:
- 非流式查询:内存会随着查询记录的增长而近乎直线增长。
- 流式查询:内存会保持稳定,不会随着记录的增长而增长。其内存大小取决于批处理大小BATCH_SIZE的设置,该尺寸越大,内存会越大。所以BATCH_SIZE应该根据业务情况设置合适的大小。
另外要切记每次处理完一批结果要记得释放存储每批数据的临时容器,即上文中的gxids.clear();
相关推荐
- MYSQL数据同步(mysql数据同步方式)
-
java开发工程师在实际的开发经常会需要实现两台不同机器上的MySQL数据库的数据同步,要解决这个问题不难,无非就是mysql数据库的数据同步问题。但要看你是一次性的数据同步需求,还是定时数据同步,亦...
- SpringBoot+Redis实现点赞收藏功能+定时同步数据库
-
由于点赞收藏都是高频率的操作,如果因此频繁地写入数据库会造成数据库压力比较大,因此采用redis来统计点赞收藏浏览量,之后定时一次性写入数据库中,缓解数据库地压力。一.大体思路设计redis中的储存结...
- 双11订单洪峰:Codis代理层如何扛住Redis集群搞不定的120万QPS?
-
双11订单洪峰下的技术挑战每年的双11购物节,都是对电商平台技术架构的极限考验。当零点钟声敲响,海量用户瞬间涌入,订单量呈指数级增长,系统需要承受每秒数十万甚至上百万次的请求。作为电商系统的核心组件之...
- 基于spring boot + MybatisPlus 商城管理系统的Java开源商城系统
-
前言Mall4j项目致力于为中小企业打造一个完整、易于维护的开源的电商系统,采用现阶段流行技术实现。后台管理系统包含商品管理、订单管理、运费模板、规格管理、会员管理、运营管理、内容管理、统计报表、权限...
- 商品券后价产品设计方案(显示券后价)
-
如何设计一套高效、准确且稳定的券后价计算系统,是电商产品设计中的关键挑战之一。本文详细介绍了商品券后价的产品设计方案,从背景目标、功能设计、系统实现逻辑到异常处理机制等多个方面进行了全面阐述。一、背景...
- 外观(门面)模式-Java实现(java 门面模式)
-
定义外观模式(FacadePattern),也叫门面模式,原始定义是:为了子系统中的一组接口提供统一的接口。定义一个更高级别的接口,使子系统更易于使用。大大降低应用程序的复杂度,提高了程序的可维护性...
- Mall - 用 SpringBoot 实现一个电商系统
-
目前最为主流的Web开发技术,包括SpringBoot、MyBatis、MongoDB、Kibina、Docker、Vue等,都是开发者十分需要掌握的技术。有没有一个全面而又实际的项目,能把这...
- 腾讯云国际站:哪些工具能实现可视化运维?
-
本文由【云老大】TG@yunlaoda360撰写开源工具Grafana:开源的可视化平台,可与Prometheus、Elasticsearch、MySQL等多种数据源集成,将复杂监控数据转化...
- 系统稳定性保障全流程实战:事前、事中、事后 Java 代码详解
-
在互联网架构中,系统稳定性是生命线。本文基于“事前预防、事中管控、事后复盘”三阶段模型,结合Java实战代码,深度解析如何构建高可用系统,让你的服务稳如磐石!一、事前:未雨绸缪,筑牢防线1.发...
- Java面试题:拆分微服务应该注意哪些地方方,如何拆分?
-
在拆分微服务时,需要综合考虑业务、技术和组织等多方面因素,以下是关键注意事项及拆分策略的详细说明:一、拆分注意事项1.业务边界清晰化单一职责原则:每个服务应专注于单一业务能力,例如订单服务仅处理订单...
- 软件性能调优全攻略:从瓶颈定位到工具应用
-
性能调优是软件测试中的重要环节,旨在提高系统的响应时间、吞吐量、并发能力、资源利用率,并降低系统崩溃或卡顿的风险。通常,性能调优涉及发现性能瓶颈、分析问题根因、优化代码和系统配置等步骤,调优之前需要先...
- Docker Compose实战,多容器协同编排的利器,让开发部署更高效!
-
开篇导读你是否有过这样的经历?启动一个项目,数据库、Redis、Web服务得一个个敲dockerrun?想让别人复现你的开发环境,却得发一堆复杂的启动命令?明明都是容器,为什么不能“一键启动”所...
- 如何设计Agent的记忆系统(agent记忆方法)
-
最近看了一张画Agent记忆分类的图我觉得分类分的还可以,但是太浅了,于是就着它的逻辑,仔细得写了一下在不同的记忆层,该如何设计和选型先从流程,作用,实力和持续时间的这4个维度来解释一下这几种记忆:1...
- 不了解业务和技术术语怎么做好产品和项目?
-
基础技术术语术语分类解释API开发技术应用程序接口,不同系统间数据交互的协议(如支付接口、地图接口)。SDK开发工具软件开发工具包,包含API、文档和示例代码,帮助快速接入服务。RESTfulAPI...
- Docker 架构详解与核心概念实战图解:一文读懂容器的前世今生
-
不懂Docker架构,你只是“用容器的人”;理解了它的底层逻辑,才能成为真正的高手!在学习Docker之前,很多同学可能会陷入一个误区:“反正我用dockerrun就能跑起服务,架构这种...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- oracle位图索引 (63)
- oracle批量插入数据 (62)
- oracle事务隔离级别 (53)
- oracle 空为0 (50)
- oracle主从同步 (55)
- oracle 乐观锁 (51)
- redis 命令 (78)
- php redis (88)
- redis 存储 (66)
- redis 锁 (69)
- 启动 redis (66)
- redis 时间 (56)
- redis 删除 (67)
- redis内存 (57)
- redis并发 (52)
- redis 主从 (69)
- redis 订阅 (51)
- redis 登录 (54)
- redis 面试 (58)
- 阿里 redis (59)
- redis 搭建 (53)
- redis的缓存 (55)
- lua redis (58)
- redis 连接池 (61)
- redis 限流 (51)